Defensive Universal Learning with Experts

نویسندگان

  • Jan Poland
  • Marcus Hutter
چکیده

This paper shows how universal learning can be achieved with expert advice. To this aim, we specify an experts algorithm with the following characteristics: (a) it uses only feedback from the actions actually chosen (bandit setup), (b) it can be applied with countably infinite expert classes, and (c) it copes with losses that may grow in time appropriately slowly. We prove loss bounds against an adaptive adversary. From this, we obtain a master algorithm for “reactive” experts problems, which means that the master’s actions may influence the behavior of the adversary. Our algorithm can significantly outperform standard experts algorithms on such problems. Finally, we combine it with a universal expert class. The resulting universal learner performs – in a certain sense – almost as well as any computable strategy, for any online decision problem. We also specify the (worst-case) convergence speed, which is very

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

طرح همگانی یادگیری برای دانش‌آموزان با نیازهای ویژه

Background: Universal design for learning (UDL) has become a popular instructional approach in special education with the growing awareness of the necessities to providing access to the general curriculum for individuals with special needs. The aim of UDL is to reduce all potential barriers to learning and enhance learning opportunities for students with special needs. Universal design for lear...

متن کامل

Prediction with Advice of Unknown Number of Experts

In the framework of prediction with expert advice, we consider a recently introduced kind of regret bounds: the bounds that depend on the effective instead of nominal number of experts. In contrast to the NormalHedge bound, which mainly depends on the effective number of experts but also weakly depends on the nominal one, we obtain a bound that does not contain the nominal number of experts at ...

متن کامل

Defensive forecasting for optimal prediction with expert advice

The method of defensive forecasting is applied to the problem of prediction with expert advice for binary outcomes. It turns out that defensive forecasting is not only competitive with the Aggregating Algorithm but also handles the case of “second-guessing” experts, whose advice depends on the learner’s prediction; this paper assumes that the dependence on the learner’s prediction is continuous.

متن کامل

Supermartingales in Prediction with Expert Advice

This paper compares two methods of prediction with expert advice, the Aggregating Algorithm and the Defensive Forecasting, in two different settings. The first setting is traditional, with a countable number of experts and a finite number of outcomes. Surprisingly, these two methods of fundamentally different origin lead to identical procedures. In the second setting the experts can give advice...

متن کامل

Prediction with Expert Evaluators' Advice

We introduce a new protocol for prediction with expert advice in which each expert evaluates the learner’s and his own performance using a loss function that may change over time and may be different from the loss functions used by the other experts. The learner’s goal is to perform better or not much worse than each expert, as evaluated by that expert, for all experts simultaneously. If the lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005